Fundamentos teóricos, evidencia empírica y aplicaciones educativas de la teoría PASS en neuropsicología escolar

Tulio M. Otero, PhD.*1; Mary A. Moreno-Torres. PhD2 y Lina M. Morales-Bernal, M.S.3

RESUMEN

Objetivo: Describir los fundamentos teóricos, la evidencia empírica y las aplicaciones educativas y clínicas de la teoría de inteligencia Planificación, Atención, Procesamiento Simultáneo y Sucesivo (PASS) para la neuropsicología escolar. Presentar la teoría PASS como marco neurocognitivo para la evaluación e intervención, integrando instrumentos de evaluación como CAS2, el CAS-Brief y CAS:RS; programas de intervención como PREP-COGENT-HCL; y el modelo de discrepancia/consistencia (MD/C) para identificar TEAp.

Método: Síntesis crítica de literatura histórica y contemporánea sobre pruebas cognitivas, como trasfondo al desarrollo de la teoría PASS. Descripción de instrumentos de evaluación y programas de intervención. Análisis de estudios (2000–2025) sobre eficacia. Exposición del modelo MD/C con un caso ilustrativo que vincula perfiles PASS con logro académico.

Resultados: Se confirma la validez estructural de PASS (cuatro factores diferenciados) y las propiedades psicométricas del CAS2. La atención emerge como proceso primario que condiciona la codificación y el control ejecutivo. Las intervenciones basadas en PASS muestran mejoras en procesamiento sucesivo y simultáneo y en habilidades académicas (especialmente lectura y matemáticas), incluso con sesiones breves y en pequeños grupos. El MD/C permite identificar TEAp al alinear debilidades PASS con desempeños académicos y orientar apoyos e instrucción.

Conclusión: La teoría PASS y las herramientas de evaluación e intervención derivadas de ella, tienden un puente efectivo entre evaluación e instrucción en contextos cultural y lingüísticamente diversos.

Palabras clave:

Neuropsicología escolar, teoría PASS, CAS2, intervención cognitiva, modelo de discrepancia/consistencia.

* Autor para la correspondencia

La correspondencia debe dirigirse a Tulio M. Otero Ph.D. 1032 Reserve Dr. Elgin, IL 60124. Correo electrónico: braindoctmo@gmail.com

¹ Faculty, School of Behavioral Sciences, California Southern University. Neurobehavioral Consultants: Practicing School Neuropsychologist. Correo electrónico: braindoctmo@gmail.com

² Universidad de Puerto Rico, Recinto de Mayagüez. Correo electrónico: mary.moreno@upr.edu

³ Universidad de Puerto Rico, Recinto de Mayagüez. Correo electrónico: lina.morales1@upr.edu

INTRODUCCIÓN

La neuropsicología escolar es una especialidad emergente que busca ofrecer a docentes, administradores educativos y otros profesionales una comprensión más profunda de las fortalezas y debilidades del procesamiento cognitivo de los estudiantes. Además, provee información para el desarrollo de prácticas educativas basadas en la relación cerebro-comportamiento, que promuevan un mayor beneficio para el estudiantado. Los profesionales de esta disciplina realizan observaciones del comportamiento, administran e interpretan pruebas neuropsicológicas estandarizadas y elaboran perfiles neurocognitivos integrados de fortalezas y debilidades. Dichos perfiles surgen de la combinación entre evaluaciones neuropsicológicas y medidas basadas en el currículo, con el propósito de ofrecer seguimiento a las necesidades particulares del estudiantado. Si bien la labor de la neuropsicología escolar se centra con frecuencia en la niñez, particularmente aquellos con discapacidades de aprendizaje, también abarca el trabajo con adolescentes y adultos¹.

Por su parte, la neuropsicología pediátrica clínica constituye una especialidad enfocada en el estudio del comportamiento y las capacidades cognitivas en relación con los mecanismos neuronales que subyacen a la actividad cerebral, especialmente en casos de daño cerebral u otros trastornos neurológicos. Al igual que la neuropsicología escolar, la neuropsicología clínica centra la aplicación de este conocimiento a la evaluación y tratamiento de niños con trastornos del neurodesarrollo, entre los que se incluyen el trastorno del espectro autista, el trastorno por déficit de atención e hiperactividad, las dificultades del lenguaje o del aprendizaje, los problemas en el desarrollo de habilidades motoras y otros desafíos similares. Ambas especialidades emplean pruebas adaptadas para la edad con el fin de establecer conclusiones sobre la relación entre el cerebro y el comportamiento en cada individuo². Sin embargo, gran parte de las pruebas utilizadas por ambas especialidades para evaluar el funcionamiento neurocognitivo fueron desarrolladas hace más de un siglo, lo cual plantea limitaciones que discutimos en el contexto de la evaluación neuropsicológica en ambientes escolares y clínicos.

Desde la perspectiva de la neuropsicología escolar, este artículo tiene por objetivo presentar y describir los fundamentos teóricos, la evidencia empírica y las aplicaciones educativas de la teoría PASS como marco neurocognitivo para comprender e intervenir a partir del perfil de fortalezas y debilidades de procesamiento. Integra: (1) una síntesis crítica de la literatura y de la base neuropsicológica de los procesos PASS; (2) herramientas de evaluación y tamizaje derivadas del Cognitive Assessment System (CAS) y sus versiones complementarias; (3) programas de intervención centrados en procesos (PREP, COGENT, HCL) y la evidencia reciente sobre su eficacia; y (4) el modelo de discrepancia/consistencia (MD/C) para la identificación de trastornos del neurodesarrollo, como los trastornos específicos del aprendizaje (TEAp), articulando lineamientos prácticos que vincular perfiles neurocognitivos con decisiones instruccionales, apoyos en el aula y monitoreo del progreso en contextos escolares cultural y lingüísticamente diversos.

La historia del uso de pruebas cognitivas

Durante la mayor parte del siglo XX e inicios del siglo XXI, las pruebas de inteligencia desempeñaron un papel importante en la educación y la psicología. Por ejemplo, para 1916, Lewis Terman³ desarrolló la prueba Stanford-Binet, basada en el trabajo de Alfred Binet y Théodore Simon. En su momento, los puntajes derivados de esta prueba influyeron de manera decisiva en el curso de vida de innumerables personas. Para algunos, representaron oportunidades de desarrollo y acceso a recursos educativos; para otros, sin embargo, tuvieron consecuencias negativas, particularmente al ser utilizadas con fines discriminatorios en el marco del movimiento eugenésico.

En ese clima, los resultados de las pruebas se interpretaron como rasgos heredados de valía, y se usaron para clasificar y excluir a grupos completos de la población^{4,5}. Este uso pseudocientífico confundió sesgos culturales y condiciones

educativas con "capacidad innata", contribuyendo al andamiaje del racismo científico⁵. Con el tiempo, la disciplina ha reconocido críticamente este lamentable legado. En 2021, la *American Psychological Association* ofreció una disculpa formal por su papel en la promoción y perpetuación de prácticas discriminatorias vinculadas, entre otras cosas, al uso de pruebas estandarizadas, reforzando así su compromiso con la validez, la equidad y la aplicación ética de la evaluación psicológica⁶.

Para 1927, Bronner et al. señalaron que "la investigación de las capacidades mentales de los seres humanos puede considerarse racionalmente una cuestión de primordial importancia para el individuo y para la civilización" (p. v). Casi un siglo después, las pruebas de inteligencia siguen siendo una de las herramientas más utilizadas por profesionales de la psicología y las puntuaciones que arrojan continúan influyendo en decisiones de gran relevancia para la vida de las personas⁸. A pesar de su uso generalizado y el enorme impacto que han tenido, las pruebas de inteligencia continúan siendo objeto de controversia en torno a su valor, su imparcialidad, la interpretación de sus resultados e, incluso, la propia definición y medición del constructo de inteligencia9-11. Estas tensiones invitan a reflexionar sobre qué tipo de preguntas deberían utilizarse para medir la inteligencia, y hasta qué punto su contenido refleja constructos respaldados por una teoría sólida de la inteligencia.

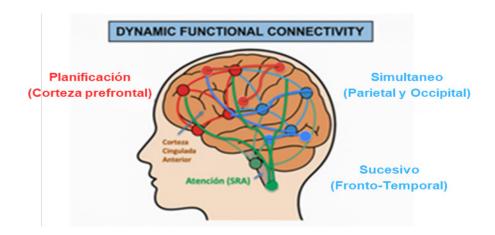
Binet y Simon¹² desarrollaron diversas versiones de ítems para medir la inteligencia. Su edición de 1911 introdujo un cambio relevante con respecto a la de 1908, al reconocer la influencia del contexto en el rendimiento de los niños. Al respecto señalaron: "Hay pruebas que requieren conocimientos ajenos a la inteligencia del niño... que ha aprendido... de sus padres o amigos... y hay pruebas demasiado exclusivamente escolares que hemos pensado bien en suprimir" (Binet y Simon, 1916, pág.275). Más adelante añadieron: "Esta superioridad verbal ciertamente debe provenir de la vida familiar; los hijos de los ricos se encuentran en un ambiente superior desde el punto de vista del lenguaje; escuchan un lenguaje más correcto y más expresivo" (p. 320). Así, anticiparon la idea de que el rendimiento en pruebas cognitivas está mediado por el capital cultural y las oportunidades educativas disponibles en el entorno inmediato.

Terman no compartió la preocupación por excluir ítems que exigieran conocimientos adquiridos. En la versión de 1916 del Stanford-Binet³, incorporó preguntas que dependían del aprendizaje escolar. Para Terman, "la inteligencia en los niveles verbal y abstracto es la forma más elevada, el sine qua non, de la capacidad mental" (p. 127). Esta postura generó críticas, pues se consideró que la prueba dependía "demasiado de material verbal y abstracto, penalizando así al individuo que, por cualquier razón, había sido discapacitado... por falta de oportunidad de adquirir y desarrollar el uso del idioma^{m3} (p. 127). La perspectiva de Terman sobre las pruebas de inteligencia también influyó en el contenido de las pruebas Alfa y Beta del Ejército de los Estados Unidos^{14,15}, diseñadas con la participación de su alumno Arthus Otis.

Arthur Otis¹⁶ desempeñó un papel decisivo en el desarrollo de las pruebas mentales del ejército, las cuales ejercieron una fuerte influencia en el trabajo posterior de David Wechsler. Formado en la Escuela de psicología militar¹⁵. Wechsler estuvo familiarizado con el diseño y la aplicación de las pruebas mentales del ejército. No es casual que la prueba de inteligencia que publicó en 1939 incluyera subpruebas muy similares a las encontradas en Army Alpha y Beta, al punto de compartir nombres e ítems prácticamente idénticos¹⁷. Décadas más tarde, Mc-Nemar señaló que, a pesar de los diferentes títulos y autores, las pruebas de inteligencia desarrolladas hasta ese momento eran "poco más que pruebas de inteligencia general y, por lo tanto, son descendientes directos de Alfa y Beta que, a su vez, eran descendientes del Binet-Simon"¹⁷ (p. 46). Estas pruebas y sus revisiones utilizadas hoy en día no fueron concebidas ni construidas sobre una teoría de la inteligencia. Como afirmaron claramente Binet y Simon: "La escala... no es un trabajo teórico; es el resultado de largas investigaciones... en las escuelas primarias de París, con niños tanto normales como subnormales"² (p. 41).

Pintner y Paterson¹⁸ señalaron que "las consideraciones teóricas han quedado rezagadas con respecto a la aplicación práctica de las pruebas mentales. Hemos estado midiendo la inteligencia mucho antes de haber decidido

© Editorial El Manual Moderno. No uses, almacenes o distribuyas los contenidos de manera ilegal.


qué es realmente la inteligencia" (p. 1). La noción de capacidad mental general propuesta por Stern¹9 fue ampliamente aceptada, sin embargo, como explicó Pintner²º: "No comenzamos con una definición clara de inteligencia general... los psicólogos tomaron prestado de la vida cotidiana un término vago que implica capacidad integral... y ha estado y todavía está intentando definirlo más claramente y dotarlo de una connotación científica más estricta" (p. 53). Pintner²º anticipó así los considerables esfuerzos que, durante el siglo, emprendieran los psicólogos para comprender e interpretar con mayor precisión lo que hoy se reconocen como pruebas de inteligencia tradicionales.

Parece razonable que la primera pregunta a la que debería responder cualquier desarrollador de pruebas de inteligencia sea: ¿Sobre qué teoría de la inteligencia se basará la prueba? En otras palabras, el contenido de una prueba de inteligencia debe estar guiado por un marco teórico que defina con claridad el constructo a medir. También parece razonable que una teoría de la inteligencia se base en la comprensión de cómo funciona el cerebro —las funciones neurocognitivas. Esto es importante porque pensar, recordar, aprender y regular la conducta son procesos que tienen su base en la actividad cerebral. Comprender los mecanismos neurales que los sustentan permite pasar de etiquetas descriptivas a explicaciones que predicen mejor el desempeño en diferentes contextos.

En este artículo proporcionamos una descripción de cómo las habilidades neurocognitivas pueden emplearse para definir la inteligencia y cómo podrían diseñarse preguntas de prueba y tareas apropiadas para representar esas habilidades. Plantear una teoría desde el cerebro también ayuda a evitar algunos de los errores de pruebas anteriores, como sesgos ligados al contexto escolar o cultural, y abre la puerta a intervenciones más precisas. Identificar qué proceso está alterado permite diseñar apoyos específicos para potenciarlo. No se trata de reduccionismo, ya que el cerebro es plástico y se moldea por la educación, el lenguaje y la cultura. Las propuestas aquí expuestas se respaldan en investigaciones recientes sobre redes neuronales y, posteriormente, se examinarán diversos aspectos de la validez de este enfoque.

La teoría de inteligencia neurocognitiva Planificación, Atención, Procesamiento Simultáneo y Procesamiento Sucesivo (PASS)

Luria planteó la hipótesis de que las funciones cognitivas pueden conceptualizarse dentro de un marco de tres unidades funcionales cerebrales, entendidas como sistemas separados pero interrelacionados, que en conjunto sustentan cuatro procesos neuropsicológicos fundamentales: planificación, atención, procesamiento simultáneo y procesamiento sucesivo²¹⁻²³ (véase Figura 1).

Figura 1. Diagrama de conectividad cerebral que ilustra interacciones de los procesos PASS.

Nota. Las conexiones entre los procesos son dinámicas. Cada uno interactúa con los demás según las demandas de la tarea. La manera en que abordamos una actividad puede dar prioridad a un proceso sobre otro; sin embargo, todos los procesos se activan y se reutilizan de forma integrada.

Imagen generada a partir de una imagen PTT previa creada por el autor con OpenAl el 2025-09-13.

Basándose en la conceptualización de Luria, Das y Naglieri definieron la inteligencia a partir de la interrelación de estos cuatro procesos neurocognitivos para desarrollar la teoría de inteligencia PASS y desarrollaron una prueba psicométrica para evaluarlos dichos procesos^{24,26}. El *Cognitive Assessment System* (CAS), desarrollado por Naglieri y Das²⁵, con una segunda edición por Naglieri, Das y Goldstein²⁷ en el 2014 (CAS2), es una prueba administrada individualmente para medir los cuatro procesos en la teoría de inteligencia PASS.

A diferencia de las pruebas tradicionales de coeficiente intelectual, centradas en el conocimiento adquirido, el CAS2 evalúa cómo los niños y adolescentes procesan la información. Este enfoque ofrece una visión más profunda sobre las fortalezas y debilidades cognitivas de cada individuo, lo que permite orientar intervenciones educativas y clínicas más ajustadas a sus necesidades. Cada uno de los procesos PASS ha sido operacionalizado en subpruebas específicas que conforman el CAS2 (véase Tabla 1).

Tabla 1. Procesos PASS

Proceso PASS	Subprueba	Descripción de la función cognitiva	
Planificación	Códigos Planificados	Emparejar símbolos con letras/números siguiendo reglas; mide estrategias y autorregulación.	
Planificación	Conexiones Planificadas	Conectar ítems en secuencia bajo reglas; mide planificación, secuenciación y resolución de problemas.	
Planificación	Planeación Numérica	Resolver secuencias numéricas de acuerdo con reglas; mide flexibilidad cognitiva y planificación estratégica.	
Atención	Atención Expresiva	Variante tipo Stroop: mide inhibición de respuestas automáticas y control atencional.	
Atención	Detección de Números	Identificar números objetivo entre distractores; mide la atención selectiva y sostenida.	
Atención	Atención Receptiva	Señalar estímulos específicos entre distractores visuales; mide vigilancia y discriminación rápida.	
Simultáneo	Matrices No Verbales	Completar patrones visuales; mide razonamiento holístico y visoespacial.	
Simultáneo	Relaciones Verbo-Espaciales	Interpretar frases sobre relaciones espaciales; mide pensamiento lógico y analítico.	
Simultáneo	Figuras No Verbales	ldentificar cómo encajan formas geométricas; mide integración visual y organización perceptual.	
Sucesivo	Series de Palabras	Repetir palabras en el orden presentado; mide la memoria verbal secuencial.	
Sucesivo	Repetición de Oraciones	Repetir oraciones completas en orden correcto; mide secuenciación fonológica y sintáctica.	
Sucesivo	Memoria de Dígitos	Repetir secuencias de dígitos en orden; mide memoria de trabajo y procesamiento auditivo secuencial.	

Planificación

La planificación es una capacidad neurocognitiva que se utiliza cuando una persona decide cómo completar una tarea que requiere el uso de estrategias, autocontrol y autocorrección, especialmente en situaciones novedosas²⁸. Esto incluye el control de acciones y pensamientos para que se puedan lograr soluciones a los problemas. Supone la generación de diferentes alternativas de resolución, sobre todo en contextos en los que ningún método o solución es evidente de inmediato. En esas situaciones, esto

puede implicar la adquisición o recuperación de soluciones de otras personas, así como el uso de otras fortalezas descritas en la teoría PASS. La capacidad de planificación también es importante cuando las personas reflexionan sobre los acontecimientos posteriores a un problema que se completó, reconociendo lo que funcionó y lo que no funcionó, y anticipando otras opciones viables a considerar en el futuro. Desde el punto de vista neuroanatómico, los lóbulos frontales del cerebro están directamente involucrados en el Procesamiento de Planificación². La planificación es similar a conceptos como metacognición y función ejecutiva²8.

Dentro de la teoría de inteligencia PASS, el proceso de Planificación se sustenta en los mecanismos neuropsicológicos del control ejecutivo, con un énfasis particular en la corteza prefrontal y su integración con redes fronto-parietales y subcorticales (véase Tabla 2). La investigación en neuroimagen y neurociencia cognitiva han demostrado de manera consistente que la corteza prefrontal dorsolateral (CPF-DL) desempeña un papel central en la memoria de trabajo, la generación de hipótesis y la resolución estratégica de problemas, funciones que son fundamentales para este constructo²⁹. Asimismo, la corteza prefrontal ventrolateral (CPF-VL) y la corteza cingulada anterior (CCA) apoyan el control inhibitorio y la supervisión del rendimiento30,31.

Estas áreas corticales funcionan como parte de redes ejecutivas más amplias, incluyendo el sistema de control fronto-parietal y la red cíngulo-opercular, que han mostrado ser esenciales para el mantenimiento de metas de tarea, la regulación de la flexibilidad cognitiva y la coordinación de la atención de arriba hacia abajo durante tareas cognitivas complejas³²⁻³⁴. Además, las estructuras subcorticales, en particular los ganglios basales y el tálamo, contribuyen a la planificación al facilitar la iniciación de acciones y la secuenciación de comportamientos dirigidos a objetivos a través de circuitos de retroalimentación con la corteza frontal^{35,36}.

La validación empírica del proceso de Planificación en la teoría PASS ha sido respaldada por investigaciones psicométricas a gran escala. Un análisis factorial confirmatorio reciente del CAS2 confirmó que un modelo de cuatro factores correlacionados—incluida la Planificación—proporciona el mejor ajuste estructural, reforzando su distinción como un constructo neurocognitivo diferenciado³⁷. Además, estudios conductuales han demostrado que las subpruebas de Planificación del CAS2 se asocian significativamente con la coordinación motora y el funcionamiento ejecutivo en niños con trastorno del desarrollo de la coordinación³⁸, y son predictivas del rendimiento académico, especialmente en matemáticas³⁹. Estos hallazgos confirman que la dimensión de planificación en la teoría PASS no sólo es teóricamente coherente, sino también empíricamente fundamentada en la neurociencia cognitiva contemporánea y en la investigación en evaluación^{40,41}.

Atención

La atención es una capacidad neurocognitiva que permite centrarse selectivamente en un estímulo específico mientras se inhiben las respuestas a otros estímulos irrelevantes. La atención es un componente esencial del comportamiento inteligente, ya que proporciona activación cortical necesaria para sostener formas superiores de atención y posibilita el reclutamiento de otros procesos neurocognitivos. Tal como señaló Luria²², las condiciones óptimas de activación son indispensables para las formas más complejas de atención, las cuales implican "el reconocimiento selectivo de un estímulo particular y la inhibición de respuestas a estímulos irrelevantes" 22 (p. 271). Los procesos superiores de atención incluyen la actividad cognitiva enfocada y selectiva, el cambio de atención basado en la prominencia y la resistencia a la distracción. A medida que aumenta la demanda atencional de la tarea, mayor es el esfuerzo requerido para sostener la actividad.

El componente de atención en la teoría PASS se define como el proceso cognitivo que permite a los individuos enfocar selectivamente en estímulos relevantes mientras inhiben distracciones y sostienen el esfuerzo mental²⁴⁻²⁷. Desde una perspectiva neuropsicológica, esta función está respaldada por un sistema interconectado que involucra

la corteza prefrontal, la corteza cingulada anterior, la corteza parietal, el tálamo y los sistemas de activación del tronco encefálico, en particular el sistema noradrenérgico del locus coeruleus^{42,43} (véase Tabla 2). Dentro de estas estructuras, la corteza prefrontal, especialmente las regiones laterales derechas y orbitofrontales, desempeña un papel clave en el control atencional, permitiendo la alternancia de tareas, la inhibición de respuestas irrelevantes y la asignación dirigida de los recursos atencionales⁴⁴.

La corteza cingulada anterior (CCA) participa en la supervisión de conflictos, la detección de errores y la asignación de recursos cognitivos, particularmente en situaciones que requieren esfuerzo sostenido o supresión de respuestas competidoras⁴⁵. Estas funciones se integran dentro de redes ejecutivas más amplias, como la red cíngulo-opercular y la red dorsal de atención, ambas fundamentales para el mantenimiento de la atención sostenida y selectiva^{33,42}.

La corteza parietal, particularmente en el hemisferio derecho, contribuye a la orientación espacial y a la priorización de la entrada sensorial en función de su relevancia. Junto con los campos oculares frontales, forma parte de la red dorsal de atención, la cual apoya el control atencional voluntario⁴⁴. En contraste, la red de atención ventral, que incluye la unión temporoparietal y la corteza frontal ventral, participa en la detección de estímulos inesperados o salientes, facilitando cambios atencionales automáticos⁴⁶. En cuanto a las estructuras subcorticales, el tálamo actúa como un filtro para la información sensorial, regulando el flujo de entradas relevantes hacia la corteza. Finalmente, el sistema reticular activador ascendente y el sistema noradrenérgico del locus coeruleus modulan el nivel de alerta y vigilancia, especialmente bajo condiciones que requieren atención sostenida⁴³.

En las evaluaciones basadas en la teoría PASS, el proceso de atención se operacionaliza mediante tareas como Atención Expresiva, Detección de Números y Atención Receptiva, las cuales requieren concentración sostenida, resistencia a distracciones y supresión de estímulos competidores²⁷.

La validación neuropsicológica de este constructo está respaldada por evidencia que demuestra cómo individuos con trastornos atencionales, como el TDAH, presentan déficits consistentes en estas subpruebas40. Además, investigaciones psicométricas recientes confirman que la atención es un factor diferenciable dentro de la estructura del CAS2³⁷. Desde una perspectiva del desarrollo, Engelhardt et al.34 demostraron que la arquitectura neuronal que sustenta la atención está mayormente establecida hacia la mitad de la infancia, coincidiendo con el rango etario evaluado por el CAS2. Finalmente, hallazgos recientes de Asonitou y Koutsouki³⁸ vinculan el rendimiento en subpruebas de atención del PASS con la planificación motora y la inhibición de respuestas, lo cual respalda aún más su validez como constructo neurocognitivo.

Es importante reconocer que la atención constituye el proceso primario dentro de la teoría de PASS. Desde la perspectiva de la arquitectura neuropsicológica, Luria^{22,47} identificó la primera unidad funcional del cerebro como el sistema responsable de regular el tono cortical, la activación y la vigilancia. Esta unidad —correspondiente al proceso de atención en PASS— constituye el punto de entrada para toda la actividad cognitiva subsecuente. Cuando la atención se ve comprometida, tanto la codificación de la información (procesamientos simultáneo y sucesivo) como la regulación de la conducta orientada a metas (planificación) se ven interrumpidas. Así, la atención establece las condiciones necesarias bajo las cuales se pueden iniciar los procesos de orden superior.

La neurociencia de redes contemporánea respalda aún más esta primacía. Diversas investigaciones han delineado la red dorsal de atención (DAN) y la red ventral de atención (VAN), responsables de la selección dirigida a metas y la reorientación hacia estímulos relevantes, respectivamente. Asimismo, las redes fronto-parietal (FPN) y cíngulo-opercular (CON) se han asociado con la iniciación y el sostenimiento de conjuntos de tareas^{34,42,48}. Estas redes regulan los sistemas perceptivos y de memoria de trabajo, controlando efectivamente qué información está disponible para la integración simultánea o la secuenciación

sucesiva. En este sentido, la atención funciona como una central de conexión y distribución del cerebro, estableciendo el contexto cognitivo que permite todo procesamiento posterior.

El papel de la atención en la memoria y el aprendizaje refuerza su carácter primario dentro de la teoría PASS. La evidencia empírica demuestra de manera consistente que la atención determina qué información se codifica en la memoria de trabajo y en la memoria a largo plazo; de hecho, la atención dividida durante la codificación perjudica gravemente la formación de recuerdos conscientes^{49,50}. Dado que tanto el procesamiento simultáneo como el procesamiento sucesivo dependen de la codificación y manipulación eficaz de la información, la atención funciona como guardián de estos procesos. Además, la atención selectiva dentro de la memoria de trabajo ayuda a priorizar las representaciones relevantes para los objetivos de la tarea, enfatizando aún más su papel fundamental⁵¹.

La evidencia proveniente del desarrollo y la educación ofrece un respaldo adicional a la primacía de la atención. Estudios longitudinales y de entrenamiento muestran que los sistemas atencionales figuran entre las primeras funciones de control en madurar y que ejercen una influencia en cascada sobre el desarrollo posterior de la función ejecutiva y el rendimiento académico. Por ejemplo, intervenciones de entrenamiento dirigidas a la atención ejecutiva en preescolares han demostrado mejoras no solo en la función ejecutiva, sino también en el razonamiento fluido⁵². Más recientemente, Posner⁵³ subrayó que las redes atencionales continúan moldeando la autorregulación y el aprendizaje a lo largo de la vida, destacando su importancia funcional como puerta de entrada a la cognición superior.

Finalmente, la evidencia obtenida con el uso del CAS2 confirma que la atención no solo es medible sino también un predictor sólido de los resultados de rendimiento académico en poblaciones diversas. Naglieri y Otero⁴⁰ destacaron que las escalas de Atención del CAS2 capturan procesos críticos de vigilancia, resistencia a la distracción y control cognitivo, y que su validez predictiva para las habilidades académicas es una de las más fuertes entre

los cuatro procesos PASS. Estos hallazgos enfatizan que la atención no es un recurso meramente auxiliar, sino un componente central para el aprendizaje y para las intervenciones educativas y clínicas.

En conjunto, la evidencia teórica, neurocientífica, del desarrollo y aplicada converge en apoyar la conclusión de que la atención constituye el proceso primario dentro de la teoría PASS. Este proceso proporciona la preparación funcional que posibilita el procesamiento de información (simultáneo y sucesivo) como la coordinación ejecutiva necesaria para la planificación. De este modo, tratar la atención como el fundamento del sistema cognitivo no sólo resulta coherente con el marco neuropsicológico original propuesto por Luria, sino que también está validado por la investigación contemporánea en neurociencia cognitiva y educación.

Procesamiento simultáneo

El procesamiento simultáneo es una capacidad neurocognitiva que se utiliza para integrar estímulos separados en un grupo completo o interrelacionado²⁷. Esta habilidad se utiliza cuando es necesario combinar elementos separados en un complejo conceptual. Esto puede implicar estímulos tanto visual-espaciales como lingüísticos que requieren estructuras gramaticales integrales. El aspecto espacial de la habilidad simultánea implica la percepción de estímulos y sus interrelaciones en su conjunto, apoyándose en la formación y manipulación de imágenes visuales. En su dimensión gramatical, posibilita la integración de palabras en ideas mediante la comprensión de las relaciones sintácticas, preposiciones e inflexiones, lo que permite a la persona acceder al significado. De este modo, los procesos simultáneos pueden implicar contenido tanto verbal como no verbal.

Desde una perspectiva neuropsicológica, el procesamiento simultáneo se asocia principalmente con los lóbulos parietal y occipital, la vía visual dorsal y las regiones integradoras de la corteza posterior, en particular del hemisferio derecho^{27,44} (véase Tabla 2). En el núcleo del procesamiento simultáneo se encuentra la integración de información espacial, visual y relacional. La corteza parietal,

especialmente el lóbulo parietal superior y el surco intraparietal, desempeña un papel central en la integración visoespacial, la memoria de trabajo espacial y la organización perceptual^{54,55}. Estas áreas son fundamentales para la construcción de representaciones mentales de configuraciones complejas, como las que se requieren en tareas de reproducción de figuras, razonamiento matricial o lectura de mapas. La vía visual dorsal, también conocida como la vía del dónde, conecta el lóbulo occipital con el parietal y es responsable del procesamiento de la localización espacial y el movimiento⁵⁶. Además del procesamiento visoespacial, la comprensión simultánea del lenguaje y de relaciones abstractas involucra las uniones temporoparietales bilaterales, particularmente del hemisferio derecho, que son responsables de interpretar metáforas, integrar información contextual y captar significados globales⁵⁷.

Esta capacidad de percibir relaciones entre componentes, en lugar de características aisladas, es esencial en la comprensión lectora, el razonamiento analógico y la resolución de problemas no verbales. El precúneo, un nodo dentro de la red de modo por defecto, también se activa en tareas que requieren la integración simultánea de estímulos internos y externos, como la imaginación mental y la construcción de escenas⁵⁸. Esto sugiere que el procesamiento simultáneo no sólo involucra integración visual en tiempo real, sino también el mantenimiento de modelos mentales coherentes.

Desde una perspectiva del desarrollo, Engelhardt et al.³⁴ encontraron que los sistemas neuronales que sustentan la integración de alto nivel, particularmente dentro del lóbulo parietal, están en gran parte maduros hacia la mitad de la infancia, lo que coincide con el rango etario evaluado por el CAS2. El rendimiento en subpruebas de Procesamiento Simultáneo del CAS2, como Matrices No Verbales, Relaciones Verbales-Espaciales y Memoria de Figuras, está vinculado a esta actividad parieto-occipital integradora. Estas tareas requieren la síntesis de múltiples pistas en una estructura significativa, ya sea verbal o visual.

Un análisis factorial confirmatorio reciente realizado por Papadopoulos et al.³⁷ confirmó que el

procesamiento simultáneo constituye un constructo estadísticamente distinto dentro de la estructura del CAS2. Además, Naglieri y Otero⁴⁰ señalan que el rendimiento en este dominio se correlaciona con medidas de comprensión lectora y razonamiento visual, lo cual respalda aún más su especificidad neurocognitiva.

Procesamiento sucesivo

El procesamiento sucesivo es una capacidad neurocognitiva que se utiliza cuando la información se organiza en una secuencia específica, en la que cada parte sigue a la otra en un orden estrictamente definido²⁷. Este tipo de procesamiento se utiliza para gestionar cualquier actividad organizada en una secuencia, como la formación de sonidos y movimientos en un orden específico. Se trata de una habilidad necesaria para recordar información en orden, comprender un enunciado basado en la sintaxis del lenguaje, así como el análisis fonológico 59,60. El procesamiento sucesivo es importante para la adquisición inicial de la lectura, en los procesos de decodificación, en la ejecución de una secuencia de movimientos motores, en la articulación del habla y, en general, cualquier tarea que requiera un orden secuencial.

Desde el punto de vista neuropsicológico, el procesamiento sucesivo se asocia principalmente con las áreas del lenguaje del hemisferio izquierdo, la corteza prefrontal, las áreas motoras suplementarias y los sistemas de memoria auditiva y fonológica sustentados en el lóbulo temporal^{27,61} (véase Tabla 2). En el núcleo del procesamiento sucesivo se encuentra el bucle fonológico, un componente de la memoria de trabajo que permite el almacenamiento temporal y la manipulación de información auditivo-verbal. Este sistema está mediado por el giro frontal inferior izquierdo (área de Broca) para el repaso articulatorio, y por el giro temporal superior izquierdo (área de Wernicke) para el almacenamiento fonológico⁶²⁻⁶⁴. Estas estructuras facilitan la organización secuencial de la entrada verbal, crucial para la construcción de oraciones, el seguimiento de instrucciones y la repetición serial.

Además, las áreas premotoras izquierdas y las áreas motoras suplementarias contribuyen a organizar la estructura temporal del habla y de las respuestas motoras, siendo relevantes para tareas secuenciales como ritmos, movimientos de la mano o cadenas simbólicas como números o letras⁶⁵. El procesamiento secuencial de información visual o espacial también involucra regiones temporoparietales y el hipocampo, que apoyan la memoria ordenada y la recuperación de patrones⁶⁶. Por su parte, la corteza prefrontal, especialmente en el hemisferio izquierdo, coordina el control atencional de la secuenciación, la planificación del comportamiento ordenado y la supresión de estímulos competidores durante tareas sucesivas⁶⁷. La integración entre estas áreas corticales y las estructuras subcorticales, como los ganglios basales y el tálamo, permite una secuenciación y recuperación eficientes en múltiples dominios.

Desde una perspectiva del desarrollo, el procesamiento sucesivo emerge en la infancia temprana y

mejora con la maduración del lenguaje, el procesamiento auditivo y la memoria de trabajo. Engelhardt et al.³⁴ reportaron que los sistemas neuronales responsables del procesamiento verbal en serie se estabilizan hacia la mitad de la infancia, coincidiendo con la edad objetivo de las evaluaciones PASS. Las subpruebas del CAS2, como Serie de Palabras, Repetición de Oraciones y Preguntas de Oraciones, dependen de la integridad de estas redes.

Un análisis factorial confirmatorio realizado por Papadopoulos et al.³⁷ validó la diferenciación del factor Sucesivo dentro del CAS2, respaldando su validez constructiva. Además, Naglieri y Otero⁴⁰ observaron que los niños con dificultades de aprendizaje que afectan la fluidez lectora o el lenguaje expresivo suelen presentar deficiencias en las subpruebas sucesivas, lo que vincula su base neuropsicológica con presentaciones clínicas observables.

Tabla 2. Fundamentos neuropsicológicos de los procesos cognitivos de la Teoría PASS

Proceso PASS	Regiones cerebrales principales	Redes neuronales asociadas	Funciones neuropsicológicas clave
Planificación Unidad III	Corteza prefrontal dorsolateral (DLPFC), corteza prefrontal ventrolateral, corteza cingulada anterior (CCA), corteza prefrontal medial	Red fronto-parietal (FPN), red cingulo-opercular (CON)	Funciones ejecutivas: formación de estrategias, resolución de problemas, flexibilidad cognitiva, autocontrol, inhibición, memoria de trabajo
Atención Unidad I	Sistema de activación reticular. Corteza prefrontal derecha, corteza parietal, ínsula anterior,	Redes de atención ventral y dorsal (VAN, DAN), CON	Atención selectiva y sostenida, vigilancia, mantenimiento de tareas, orientación y cambio de foco atencional
Procesamiento Simultáneo Unidad II	Corteza occipital-parietal, unión temporo-parietal, corteza cingulada posterior	Red por defecto (DMN), vías de procesamiento visual- espacial y de objetos	Integración de información visual-espacial, reconocimiento de patrones, procesamiento gestalt, razonamiento relacional
Procesamiento Sucesivo Unidad II	Giro frontal inferior izquierdo (área de Broca), giro temporal superior, área motora suplementaria	Redes de procesamiento auditivo y fonológico	Secuenciación, recuerdo serial, procesamiento fonológico, sintaxis, comprensión del orden de palabras

Notas: Red Frontoparietal (FPN): Facilita la actualización del conjunto de tareas y la resolución de problemas (control ejecutivo).

- Red Cíngulo-Opercular (CON): Mantiene la atención a lo largo del tiempo y monitoriza el rendimiento en la tarea.
- Redes de Atención Dorsal y Ventral (DAN/VAN): Facilitan la atención descendente y ascendente, respectivamente.
- Red de Modo Por Defecto (DMN): Aunque clásicamente se asocia con el descanso, contribuye a simulaciones internas e integraciones complejas en el procesamiento simultáneo.
- Redes Auditivo-Fonológicas: Facilitan la decodificación de la información verbal secuencial, esencial para el lenguaje y la lectura.

Aplicación de la teoría PASS a la Neuropsicología Escolar

En términos de aplicación de la teoría PASS a escenarios escolares, se han desarrollado instrumentos psicológicos para medir los cuatro procesos que la componen, así como también herramientas de intervención neuropsicológica diseñadas para fortalecerlos. Tanto los instrumentos como las intervenciones neuropsicológicas basadas en la teoría PASS proveen herramientas útiles para profesionales de la neuropsicología que trabajan en contextos escolares.

Instrumentos de evaluación

Cognitive Assessment System (CAS). El modelo PASS constituyó la base conceptual para el desarrollo del *Cognitive Assessment System* (CAS), un sistema de evaluación que, si bien se nutre de la tradición psicométrica, también plantea un reto a sus fronteras metodológicas. La primera versión del CAS fue diseñada por J.P. Das y Jack A. Naglieri²s, y publicada en 1997. Para el año 2000, la versión inicial del CAS fue traducida y adaptada al español, por el equipo de investigación dirigido por la Dra. Wanda C. Rodríguez-Arocho. Posteriormente, en 2014 se publicó la segunda edición del CAS-2 en inglés, elaborada por Naglieri, Das y Goldstein²7, a la cual se añadieron materiales suplementarios en español en 2017 por Naglieri, Moreno y Otero⁶⁸.

Esta batería cuenta con dos modalidades: la estándar, integrada por 12 subpruebas (tres para cada uno de los procesos postulados por la teoría PASS), y la básica, que incluye dos subpruebas por escala. El CAS2 se administra individualmente a niños y adolescentes de entre 5 y 18 años. La escala de Planificación comprende las tareas de Planificación de Números Pareados, Códigos Planificados y Conexiones Planificadas; la de Procesamiento Simultáneo incluye Matrices, Relaciones Verbales-espaciales y Memoria de Figuras; la de Atención incorpora Atención Expresiva, Detección de Números y Atención Receptiva; y la de Procesamiento Sucesivo está compuesta por Serie de Palabras, Repetición de Oraciones (para edades de 5 a 7 años) o Preguntas a Oraciones (para edades de 8 a 18 años), además de Retención Visual de Dígitos. En su versión original en inglés el Cognitive Assessment System 2 (CAS2) presenta un índice de confiabilidad de .95 y una consistencia temporal de r = .93, lo cual sugiere un buen nivel de precisión en la medición de las capacidades que pretende evaluar^{26,27}. Aunque no se dispone de datos específicos sobre la confiabilidad y consistencia temporal de la versión en español, estudios que han administrado el instrumento en inglés y español muestran una correlación de .97 entre ambas versiones⁶⁹.

Cognitive Assessment System 2: Brief (CAS2: Brief)⁷⁰ El CAS2: Brief constituye una forma abreviada del CAS2 y ha sido validada para la evaluación del procesamiento cognitivo en estudiantes de entre 5 años a 18 años de edad. Este instrumento ofrece resultados en tres niveles: una puntuación global, las escalas correspondientes a los cuatro procesos cognitivos propuestos por la teoría PASS y las puntuaciones de cada subprueba. El CAS2: Brief se compone de una subprueba por proceso cognitivo, con un tiempo aproximado de administración de 20 minutos. En cuanto a sus propiedades psicométricas, el puntaje global del CAS2: Brief alcanza un coeficiente de confiabilidad de 0.94, mientras que las subpruebas individuales presentan índices que oscilan entre 0.86 y 0.93. La escala global, además, reporta una consistencia interna de 0.95, lo que confirma la solidez y robustez psicométrica de este instrumento⁷⁰.

Cognitive Assessment System: Rating Scale (CAS:RS)⁷¹ Esta escala permite al personal docente evaluar los procesos neurocognitivos PASS a través de comportamientos académicos y sociales del estudiantado. De acuerdo con los autores de la escala, este instrumento contribuye a la identificación de dificultades cognitivas vinculadas al desempeño académico y resulta pertinente para orientar la intervención y apoyar la toma de decisiones respecto a las estrategias de enseñanza más adecuadas para cada estudiante. Los autores señalan que la escala debe ser completada por un profesional que conozca de manera cercana el desempeño académico del estudiante. Esta escala fue traducida y adaptada al español en el 2015 por la Dra. Yisel Torres-González⁷². El procedimiento de adaptación incluyó la traducción al español, la revisión por expertos bilingües y docentes, la traducción inversa y una revisión final por expertos, asegurando así la equivalencia conceptual y cultural del instrumento.

Materiales y programas de intervención

Las principales herramientas de intervención basadas en la teoría PASS son: (a) Reading Enhancement Program (PREP; Das, 1999); (b) Cognitive Enhancement Training (COGENT; Das, 2004); y (c) Helping Children Learn: Intervention Handouts for Use in School and at Home (HCL; Naglieri & Pickering, 2010).

Reading Enhancement Program (PREP)⁷³. El PREP es un programa de intervención orientado a fortalecer los procesos de procesamiento simultáneo y sucesivo de la información, considerados fundamentales para el desarrollo de las habilidades lectoras (Das, 1999; Naglieri & Otero, 2017). Su propuesta se centra en promover que los estudiantes tomen conciencia de su propio uso de estrategias para la resolución de problemas mediante la verbalización de sus procesos cognitivos, sin recurrir a la enseñanza explícita de dichas estrategias.

Cognitive Enhancement Training (CO-GENT)⁷⁴. El COGENT es un programa de educación infantil diseñado para fortalecer el funcionamiento cognitivo, la conciencia fonológica y el lenguaje, habilidades estrechamente vinculadas con la alfabetización y el aprendizaje escolar (Das, 2004).

Helping Children Learn: Intervention Handouts for Use in Schools and at Home (HCL)⁷⁵. El HCL es un manual de intervenciones, dirigido especialmente a familias y docentes, que contiene 75 estrategias psicoeducativas, de las cuales 33 se encuentran disponibles en español.

En una revisión de literatura realizada por Cordero-Arroyo, G. et al.⁷⁶, se realizó un análisis metodológico de 17 estudios publicados entre los años 2000 y 2019 en los que se emplearon alguno de estos programas. Los resultados de este análisis sugieren que las intervenciones basadas en la teoría PASS generan mejoras en el procesamiento

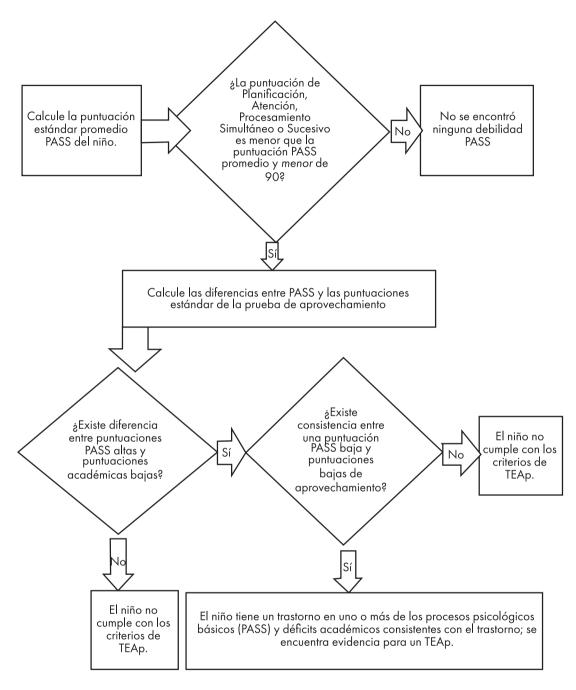
cognitivo, particularmente en los procesos de procesamiento sucesivo y simultáneo de la información. Asimismo, en los estudios revisados se observaron mejoras en destrezas académicas, especialmente en lectura y matemáticas. Tanto las habilidades académicas como los procesos cognitivos mostraron progreso cuando se aplicaron de manera individual o en pequeños grupos. Finalmente, la eficacia de estas intervenciones se mantuvo aun cuando las sesiones fueron de corta duración o en contextos con un número limitado de encuentros.

En la última década, la evidencia empírica ha reforzado el vínculo evaluación-intervención de la teoría PASS mediante dichos instrumentos. En estudiantes con dificultades específicas de aprendizaje, un ensayo con COGENT mostró mejoras significativas en velocidad y comprensión lectora, reducción de errores de lectura y ganancia en dictado tras 12 sesiones (6 semanas), confirmando su utilidad como entrenamiento cognitivo centrado en procesos⁷⁷. Otras investigaciones han respaldado, además, la eficacia de las intervenciones que refuerzan los procesos simultáneo y sucesivo vinculados al rendimiento lector. Por ejemplo, Ares-Ferreirós et al.⁷⁸ implementaron un programa de instrucción metacognitiva con 48 sesiones en estudiantes de tercer grado y hallaron mejoras significativas en procesos cognitivos y conciencia lectora frente a un grupo de comparación que no mostró cambios. Más recientemente, Morales-Bernal et al.⁷⁹ reportaron, en un estudio de caso con TEAp, incrementos en procesamiento simultáneo y sucesivo, memoria, funciones ejecutivas y metacognición tras 16 sesiones que integran tareas de PREP y orientaciones de HCL. Asimismo, un estudio en India con PREP + COGENT (diseño pretest-postest con cribado inicial de 147 alumnos de 5.º grado) evidenció mejoras en decodificación fonética, conciencia y memoria fonológica, nombrado rápido, comprensión de pasajes y planificación en escolares con dislexia⁸⁰. No obstante, la base empírica reciente con PREP/COGENT/ HCL sigue siendo limitada, con muestras pequeñas, seguimientos breves y variabilidad en fidelidad de implementación. Se requieren ensayos controlados más amplios y prerregistrados para consolidar la generalización de los efectos.

La teoría del PASS y el modelo de discrepancia/consistencia (MC/C) para identificar trastornos específicos del aprendizaje (TEAp)

Los TEAp representan un conjunto heterogéneo de manifestaciones neurocognitivas que afectan la ejecución académica en relación con el nivel esperado. Junto a los problemas atencionales y de conducta, representan uno de los diagnósticos más frecuentes en escenarios escolares. Al definir los TEAp como un trastorno del neurodesarrollo, resulta importante utilizar modelos teóricos y de evaluación, como la teoría PASS y el CAS2, que den cuenta de los procesos neurocognitivos que subyacen los síntomas asociados a este diagnóstico⁸¹.

El modelo de discrepancia/consistencia (MD/C), fundamentado en la teoría PASS⁸² ofrece un marco conceptual y metodológico para la identificación de los TEAp. Este modelo proporciona un conjunto de medidas que facilitan la elaboración de un perfil de los procesos y habilidades neuropsicológicas, el cual permite comprender las dificultades de aprendizaje en su especificidad. Asimismo, ofrece una serie de lineamientos que orientan el diseño de intervenciones acordes al perfil neuropsicológico derivado de la evaluación. Desde la teoría del PASS, una deficiencia en alguno de estos procesos cognitivos pudiera expresarse en un TEAp.


Como se muestra en la Figura 2, el modelo MD/C parte de la premisa de que debe existir evidencia de una debilidad neurocognitiva en alguno de los procesos de la teoría PASS, junto con puntuaciones de pruebas de aprovechamiento que reflejen una variabilidad sustancial y puedan vincularse con las discrepancias observadas en el CAS2. Este planteamiento se traduce en tres posibles hallazgos: 1) discrepancias significativas entre las escalas individuales del PASS en comparación con el promedio general del estudiante (diferencias dentro del mismo individuo), 2) una o dos puntuaciones PASS ubicadas significativamente por debajo de lo considerado típico o dentro del rango normal, y 3) resultados de aprovechamiento académico que se correspondan con las fortalezas y debilidades evidenciadas en los procesos PASS. La identificación de este patrón constituye evidencia de que el estudiante presenta un trastorno en los procesos psicológicos básicos, condición indispensable para el diagnóstico de un TEAp.

En la Figura 3 se presenta un caso ilustrativo de este modelo. En dicho ejemplo se identifica la presencia de un TEAp, dado que se cumplen los siguientes criterios: 1) discrepancia significativa entre los resultados de las medidas de procesamiento neurocognitivo, evidenciando tanto fortalezas como debilidades; 2) discrepancia entre los puntajes en medidas de procesamiento neurocognitivo y los obtenidos en pruebas de aprovechamiento académico; 3) correspondencia entre los puntajes bajos en procesamiento neurocognitivo y las puntuaciones reducidas en aprovechamiento académico; y 4) los puntajes bajos se encuentran significativamente por debajo de la media esperada²⁶.

Al comparar el rendimiento de un niño en los procesos neuropsicológicos evaluados mediante el PASS con su desempeño académico, es posible establecer la correspondencia entre fortalezas y debilidades neurocognitivas y aquellas observadas en el ámbito académico. Este análisis permite diseñar planes de intervención focalizados en las habilidades neuropsicológicas que sustentan las destrezas académicas, como los descritos en este artículo (p. ej., HCL, PREP). En esta misma línea, las intervenciones neurocognitivas traducen el perfil PASS en decisiones instruccionales con impacto y pueden implementarse en contextos escolares y clínicos mediante protocolos flexibles y replicables, acortando la brecha entre teoría y práctica. Cuando pese a apoyos convencionales persisten dificultades en lectura, escritura o matemáticas, conviene intervenir sobre las bases neuropsicológicas con un enfoque de práctica basada en evidencia: formular preguntas claras, recuperar y valorar la mejor evidencia, aplicarla y monitorear el progreso. Así, la neuropsicología aplicada facilita identificar necesidades y guiar intervenciones personalizadas que potencian el aprendizaje y favorecen su generalización a la vida diaria.

CONCLUSIÓN

Este artículo integró fundamentos teóricos, evidencia empírica y aplicaciones prácticas de la

Figura 2. Pasos para utilizar el modelo de discrepancia/consistencia. Nota. Traducido y adaptado con autorización del autor, Dr. Jack Naglieri.

teoría PASS para transitar de un enfoque psicométrico centrado en puntajes globales hacia una comprensión procesual de la inteligencia con utilidad directa en contextos escolares y clínicos. Aplicada con el CAS2 —y sus versiones CAS2: Brief y CAS:RS—, la teoría PASS permite generar perfiles neurocognitivos que describen con precisión fortalezas y necesidades, directamente accionables para decidir apoyos, diseñar intervenciones y monitorear el progreso. Todo esto resulta especial-

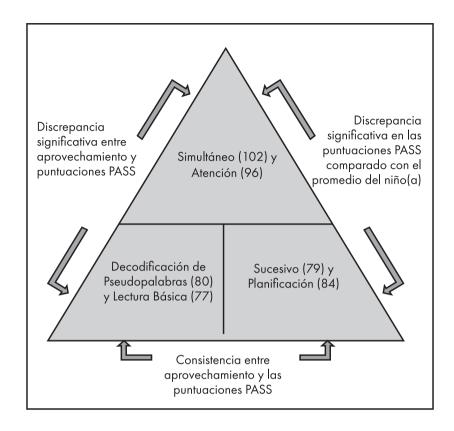


Figura 3. Modelo de discrepancia/congruencia para identificación de TEAp.

Nota. Traducido y adaptado con autorización del autor, Dr. Jack Naglieri. En la figura 3 se ilustra la aplicación del MD/C a un caso. En este caso se observa una discrepancia entre procesos neuropsicológicos, obteniendo puntuaciones altas y bajas en los mismos [Procesamiento simultáneo (102) y Atención (96), Procesamiento sucesivo (79) y Planificación (84)]. También se muestra una segunda discrepancia entre aprovechamiento académico con puntuaciones bajas [Decodificación de Pseudopalabras (80) y Lectura Básica (77)] y procesos neuropsicológicos con funcionamiento adecuado. Finalmente, se observa consistencia entre puntuaciones bajas en aprovechamiento académico y puntuaciones bajas en procesos neuropsicológicos. Este caso presenta fortalezas relativas a sí mismo en procesos neuropsicológicos, acompañado de consistencia en dificultades en destrezas académicas y procesos neuropsicológicos que explican dichas dificultades en destrezas. Este caso cumple con los criterios diagnósticos de un TEAp consistente a lo establecido por la ley IDEA, evidenciando déficits en uno o más procesos psicológicos básicos que acompañan las dificultades en destrezas académicas.

mente pertinente en contextos cultural y lingüísticamente diversos.

De forma coherente, las herramientas de evaluación (CAS2, CAS2: Brief, CAS:RS) y los programas de intervención sobre procesos neurocognitivos PASS (PREP, COGENT, HCL) tienden un puente entre evaluación e instrucción. El modelo de discrepancia/consistencia (MD/C) vincula debilidades específicas en PASS con dificultades académicas observables y orienta la toma de decisiones dentro de sistemas multinivel de apoyo.

Con orientación al futuro, se recomienda ampliar la diversidad muestral, reforzar la fidelidad de implementación, realizar ensayos controlados, y verificar la invariancia transcultural y la sensibilidad al cambio. La estandarización digital del CAS2 y su integración con indicadores curriculares de respuesta a la intervención fortalecerán la validez ecológica. Adoptar la teoría del PASS, y sus herramientas derivadas, como vocabulario analítico y guía de intervención constituye un paso decisivo para traducir la neuropsicología escolar en prácticas educativas efectivas, pertinentes y equitativas.

REFERENCIAS

- 1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed, text rev. Washington (DC): American Psychiatric Association; 2022.
- 2. American Psychological Association. Publication manual of the American Psychological Association. 7th ed. Washington (DC): American Psychological Association; 2023.
- 3. Terman LM. The Measurement of Intelligence: An Explanation of and a Complete Guide for the Use of the Stanford Revision and Extension of the Binet–Simon Intelligence Scale. Boston: Houghton Mifflin; 1916. Available from: https://www.gutenberg.org/files/20662/20662-h/20662-h.htm?utm
- Winston AS. Scientific racism and North American psychology. Oxford Research Encyclopedia of Psychology [Internet]. Oxford University Press. 2020 May 29 [cited 2025 Sep 16]. doi:10.1093/acrefore/9780190236557.013.516. Available from: https://oxfordre.com/psychology/view/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-e-516
- National Human Genome Research Institute (NHGRI). Eugenics: Its origin and development (1883– present) [Internet]. 2021 Nov 30 [cited 2025 Sep 16]. Available from: https://www.genome.gov/ about-genomics/educational-resources/timelines/eugenics
- 6. American Psychological Association. Apology to People of Color for APA's Role in Promoting, Perpetuating, and Failing to Challenge Racism, Racial Discrimination, and Human Hierarchy in U.S. [Internet]. Washington (DC): American Psychological Association; 2021 Oct 29 [cited 2025 Sep 16]. Available from: https://www.apa.org/about/policy/racism-apology
- 7. Bronner AF, Healy W, Lowe GM, Shimberg ME. A manual of individual mental tests and testing. Boston: Little, Brown and Company; 1927. p. v.
- 8. Benson NF, Floyd RG, Kranzler JH, Eckert TL, Fefer SA, Morgan GB. Test use and assessment practices of school psychologists in the United States: Findings from the 2017 National Survey. J Sch Psychol. 2019;72:29–48. doi:10.1016/j.jsp.2018.12.004
- American Psychological Association. Intelligence [Internet]. Washington (DC): American Psychological Association; 2021 [cited 2025 Sep 16]. Available from: https://dictionary.apa.org/intelligence
- 10. Ackerman PL. Intelligence Process vs. Content and Academic Performance: A Trip through a House of Mirrors. Journal of Intelligence. 2022; 10(4):128. https://doi.org/10.3390/jintelligence10040128
- 11. Kaufman AS, Raiford SE, Coalson DL, editors. Intelligent Testing with the WISC-V. Hoboken (NJ): John Wiley & Sons; 2016. doi:10.1002/9781394259397.
- 12. Binet A, Simon T. The development of intelligence in children (the Binet–Simon scale). Transl. by Kite ES. Baltimore (MD): Williams & Wilkins; 1916. p. 275,320 Available from: https://archive.org/details/developmentofint00bineuoft (accessed 2025-09-16).
- 13. Freeman FS. Theory and Practice of Psychological Testing. Rev ed. New York: Henry Holt; 1955. p.127.
- 14. Yoakum CS, Yerkes RM. Army mental tests. New York: Henry Holt; 1920. [Internet]. [citado 2025-09-16]. Disponible en: https://archive.org/details/armymentaltests013695mbp/page/n3/mode/2up
- 15. Yerkes RM. Psychological examination in the United States Army. Washington (DC): Government Printing Office; 1921. [Internet]. [citado 2025-09-16]. Disponible en: https://archive.org/details/psychologicalexa00yerk/page/n13/mode/2up?utm=
- 16. Otis AS. Otis group intelligence scale: Manual of directions for primary and advanced examinations. Yonkers-on-Hudson (NY): World Book Company; 1918. [Internet]. [citado 2025-09-16]. Disponible en: https://books.google.com/books?id=dxo6AQAAMAAJ
- Matarazzo JD. Wechsler's measurement and appraisal of adult intelligence. 5th ed. Baltimore (MD): Williams & Wilkins; 1972. [Internet]. [citado 2025-09-16]. Disponible en: https://archive.org/details/isbn_683-055954
- 18. Pintner R, Paterson DG. A scale of performance tests. New York: D. Appleton; 1917. [Internet]. [citado 2025-08-12]. Disponible en: https://rehabilitationpsychologist.org/resources/performance%20tests.pdf

© Editorial El Manual Moderno. No uses, almacenes o distribuyas los contenidos de manera ilegal.

- 19. Stern W. The psychological methods of testing intelligence. Whipple GM, translator. Baltimore (MD): Warwick & York; 1914. [Internet]. Available from: https://archive.org/download/psychologicalmet-O0ster/psychologicalmetO0ster.pdf
- 20. Pintner, R. Intelligence testing: methods and results. New York: Henry Holt; 1923. Available from: https://archive.org/details/intelligencetest00rudo/page/n3/mode/2up
- 21. Luria AR. Higher cortical functions in man. New York: Basic Books; 1966.
- 22. Luria AR. The working brain: An introduction to neuropsychology. New York: Basic Books; 1973.
- 23. Luria AR. Cognitive development: Its cultural and social foundations. Cambridge (MA): Harvard University Press: 1980.
- 24. Das JP, Naglieri JA, Kirby JR. Assessment of cognitive processes: The PASS theory of intelligence. Boston: Allyn & Bacon; 1994.
- 25. Naglieri JA, Das JP. Cognitive Assessment System. San Antonio (TX): Pearson; 1997.
- 26. Naglieri JA, Otero TM. Essentials of CAS2 assessment. Hoboken (NJ): Wiley; 2017.
- 27. Naglieri JA, Das JP, Goldstein S. Cognitive Assessment System-Second Edition (CAS2). Austin (TX): PRO-ED: 2014.
- 28. Goldberg E. The new executive brain: Frontal lobes in a complex world. Oxford: Oxford University Press; 2009.
- 29. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202. doi:10.1146/annurev.neuro.24.1.167
- 30. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: One decade on. Trends Cogn Sci. 2014; 18(4): 177-85. doi: 10.1016/j.tics.2013.12.003
- 31. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215-22. doi:10.1016/S1364-6613(00)01483-2
- 32. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci. 2013;16(9):1348-55. doi:10.1038/nn.3470
- 33. Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, et al. A dual-networks architecture of top-down control. Trends Cogn Sci. 2008;12(3):99-105. doi:10.1016/j. tics.2008.01.001
- 34. Engelhardt LE, Roe MA, Juranek J, Church JA. The neural architecture of executive functions is established by middle childhood. NeuroImage. 2019;185:479-89. https://doi.org/10.1016/j. neuroimage.2018.10.024
- 35. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Res Rev. 2000;31(2-3):236-50. doi:10.1016/S0165-0173(99)00040-5
- 36. Armstrong T, Choudhury S. Neuroscience of learning and intelligence: Revisiting process-based theories. Educ Psychol Rev. 2023;35(4):1105-22. doi:10.1007/s10648-022-09693-1
- 37. Papadopoulos TC, Spanoudis G, Naglieri JA, Das JP. Unraveling the multifaceted nature of intelligence: A correlated factor model approach grounded in PASS theory, Assessment, 2025; Epub ahead of print.
- 38. Asonitou K, Koutsouki D. Cognitive processing and inclusive education: PASS theory in practice. Eur J Spec Needs Educ. 2024;39(1):75-92. doi:10.1080/08856257.2023.2175489
- 39. Sergiou A, Papadopoulos TC, Spanoudis G. Executive function and PASS processes in reading difficulties. J Learn Disabil. 2023;56(4):289-302. doi:10.1177/00222194221150732
- 40. Naglieri JA, Otero TM. PASS theory of intelligence and its measurement using the Cognitive Assessment System, J Intell. 2024; 12(8):77. doi:10.3390/jintelligence12080077
- 41. Ares Ferreirós M, Rodríguez J, González P. Neurocognitive processes in Spanish-speaking children: Applications of the PASS theory. Rev Iberoam Psicol Educ. 2024;31(2):145-62. https://doi. org/10.1080/ripe.2024.145
- 42. Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;35:73-89. doi:10.1146/annurev-neuro-062111-150525

- 43. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50. doi:10.1146/annurev.neuro.28.061604.135709
- 44. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15. doi:10.1038/nrn755
- 45. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive control. Psychol Rev. 2001;108(3):624–52. doi:10.1037/0033-295X.108.3.624
- 46. Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist. 2014;20(2):150–9. doi:10.1177/1073858413494269
- 47. Luria AR. Higher cortical functions in man. 2nd ed., rev. and exp. New York (NY): Basic Books; 1980.
- 48. Menon V, D'Esposito M. The role of cognitive control networks in human intelligence. Nat Rev Neurosci. 2022;23(6):367–80.
- 49. Chun MM, Turk-Browne NB. Interactions between attention and memory. Curr Opin Neurobiol. 2007;17(2):177–84. doi:10.1016/j.conb.2007.03.005
- 50. Gazzaley A, Nobre AC. Top-down modulation: Bridging selective attention and working memory. Trends Cogn Sci. 2012;16(2):129–35. doi:10.1016/j.tics.2011.11.014
- 51. Oberauer K, Hein L. Attention to information in working memory. Curr Dir Psychol Sci. 2012;21 (3): 164–9. doi:10.1177/0963721412444727
- 52. Rueda MR, Posner MI, Rothbart MK. The development of executive attention: Contributions to the emergence of self-regulation. In: Measurement of executive function in early childhood. New York: Psychology Press; 2016. p. 573–94.
- 53. Posner MI. Attention in a social world. 2nd ed. Oxford: Oxford University Press; 2023.
- 54. Uddin LQ, Supekar K, Ryali S, Menon V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J Neurosci. 2010;30(50):17961 73. doi:10.1523/JNEUROSCI.0305-10.2010
- 55. Koenigs M, Barbey AK, Postle BR, Grafman J. Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci. 2009;29(47):14980–6. doi:10.1523/JNEUROSCI.3706-09.2009
- 56. Ungerleider LG, Haxby JV. What and where in the human brain. Curr Opin Neurobiol. 1994;4(2):157–65. doi:10.1016/0959-4388(94)90066-3
- 57. St George M, Kutas M, Martinez A, Sereno MI. Semantic integration in reading: engagement of the right hemisphere during discourse processing. Brain: a journal of neurology, 122 (Pt 7), 1317–1325.5 https://doi.org/10.1093/brain/122.7.1317
- 58. Cavanna AE, Trimble MR. The precuneus: A review of its functional anatomy and behavioural correlates. Brain. 2006; 129(3):564–83. doi:10.1093/brain/awl004
- 59. Luria AR. Language and cognition. New York: Wiley; 1982.
- 60. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. 5th ed. Oxford: Oxford University Press; 2012.
- 61. Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, et al. Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage. 2006;30(4):1414–23. doi:10.1016/j.neuroimage.2005.11.002
- 62. Baddeley AD. Working memory: Looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39. doi:10.1038/nrn1201
- 63. Baddeley A. Working memory: Theories, models, and controversies. Annu Rev Psychol. 2012;63:1–29.
- 64. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402. doi:10.1038/nrn2113
- 65. Koechlin E, Jubault T. Broca's area and the hierarchical organization of human behavior. Neuron. 2006;50(6):963–74. doi:10.1016/j.neuron.2006.05.017

© Editorial El Manual Moderno. No uses, almacenes o distribuyas los contenidos de manera ilegal.

- 66. Cabeza R, Nyberg L, Park DC. Cognitive neuroscience of aging: Linking cognitive and cerebral aging. Oxford: Oxford University Press; 2008.
- 67. Petrides M. Lateral prefrontal cortex: Architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):781-95. doi:10.1098/rstb.2005.1631
- 68. Naglieri JA, Moreno MA, Otero TM. Cognitive Assessment System, Second Edition: Español. Interpretive and Technical Manual. Austin (TX): PRO-ED; 2017.
- 69. Otero TM, Gonzales L, Naglieri JA. The neurocognitive assessment of Hispanic English-language learners with reading failure. Appl Neuropsychol Child. 2013;2(1):24-32. doi:10.1080/21622965. 2012.670547.
- 70. Naglieri JA, Das JP, Goldstein S. Cognitive Assessment System, Second Edition: Brief (CAS2: Brief). Examiner's Manual. Austin (TX): PRO-ED; 2014.
- 71. Naglieri JA, Das JP, Goldstein S. Cognitive Assessment System, Second Edition: Rating Scale (CAS2: Rating Scale). Examiner's Manual. Austin (TX): PRO-ED; 2014.
- 72. Torres-González YM. Traducción y adaptación cultural del Cognitive Assessment System 2: Rating Scale (CAS2:RS): Equivalencia semántica y de contenido [tesis no publicada]. Ponce (PR). Revista Puertorriqueña de Psicología. 2015;30(1):116-21.
- 73. Das JP. PASS Reading Enhancement Program (PREP). Sarka Educational Resources; 1999.
- 74. Das JP. The Cognitive Enhancement Training Program (COGENT). New York: Springer; 2004.
- 75. Naglieri JA, Pickering E. Helping children learn: Intervention handouts for use in school and at home. 2nd ed. Baltimore (MD): Brookes Publishing; 2010.
- 76. Cordero-Arroyo G, Bermonti-Pérez M, Moreno-Torres MA, Rodríguez-Arocho WC. Analysis of PASS theory-based interventions for improving cognitive processing and learning: A narrative review. Rev Iberoam Neuropsicol. 2021;4(2):96-112.
- 77. Atmaca F, Yıldız-Demirtas V. Does cognitive training affect reading and writing skills of students with specific learning disabilities? Learn Disabil Q. 2023;46(2):106-19. doi:10.1177/07319487221085994
- 78. Ares Ferreirós M, Alfonso Gil S, Rodríguez Enríquez M, Conde Rodríguez Á, Deaño M. Improvement in simultaneous processing through metacognitive instruction. Front Educ. 2024;9:1346739. doi:10.3389/feduc.2024.1346739
- 79. Morales-Bernal LM, Moreno-Torres MA, Perea-Nieves C. Evaluación e intervención neuropsicológica en el contexto escolar: Estudio de un caso con trastorno específico de aprendizaje. Rev Iberoam Neuropsicol. 2025;8(1):55-72. https://neuroplataforma.com/revista/vol-8-no-1-enero-junio-2025/
- 80. Khuntia S, Priyadarshini Das PP, Behera N. The effectiveness of cognitive remediation programs among children with neuro-developmental disorder (dyslexia). J Intellect Disabil Diagn Treat. 2025; 13(1):85-9. Available from: https://www.lifescienceglobal.com/pms/index.php/jiddt/article/view/10132
- 81. Moreno-Torres M, Torres-González Y. Trastornos específicos del aprendizaje [Specific learning disabilities]. In: Arango-Laspilla J, Romero-García I, Hewitt-Ramírez N, Rodríguez-Irizarry W, editors. Trastornos psicológicos y neuropsicológicos en la infancia y la adolescencia. Ciudad de México: Manual Moderno; 2018. p. 329-58.
- 82. Naglieri JA. The discrepancy/consistency approach to SLD identification using the PASS theory. In: Flanagan DP, Alfonso VC, editors. Essentials of specific learning disability identification. Hoboken (NJ): John Wiley & Sons; 2011. p. 145-71.